 |
$\begin{align}&\text{Construction - Draw OX Perpendicular from O to AB}\\[5pt]
&AB \perp OX , \text { }\text{X is the midpoint of AB}\\[5pt]
AB &=12cm\\[5pt]
XB &=\frac{1}{2}\times 12=6cm\\[5pt]
&\text{Applying Pythagoras' theorem to OXB triangle}\\[5pt]
OB^2 &=OX^2+XB^2\\[5pt]
&=8^2+6^2\\[5pt]
&=64+36\\[5pt]
&=100\\[5pt]
OB &=\sqrt{100}\\[5pt]
&\underline{\underline{OB=10cm}}
\end{align}$ |  |
 |
$\begin{align}O\hat XB &=O\hat YB=90^0\text { }\text{Since the line joining the center of the circle to the midpoint of a chord is perpendicular to the chord.}\\[5pt]
AB&=6cm\\[5pt]
XB&=3cm\text{(X is the midpoint of AB)}\\[5pt]
BC&=8cm\\[5pt]
BY&=4cm\text{(Y is the midpoint of BC)}\\[5pt]
&\text{Applying Pythagoras' theorem to OBY triangle}\\[5pt]
OB^2 &=OY^2+YB^2\\[5pt]
5^2&=OY^2+4^2\\[5pt]
OY^2&=5^2-4^2\\[5pt]
&=25-16\\[5pt]
&=9\\[5pt]
OY &=\sqrt{9}\\[5pt]
&\underline{\underline{OY=3cm}}
\end{align}$
$\begin{align}&\text{Applying Pythagoras' theorem to OXB triangle}\\[5pt]
OB^2 &=OX^2+XB^2\\[5pt]
5^2&=OX^2+3^2\\[5pt]
OX^2&=5^2-3^2\\[5pt]
&=25-9\\[5pt]
&=16\\[5pt]
OX &=\sqrt{16}\\[5pt]
&\underline{\underline{OX=4cm}}\\[5pt]
&\text{Perimeter of the OXBY}\\[5pt]
&=OY+YB+BX+XO\\[5pt]
&=3+4+3+4\\[5pt]
&\underline{\underline{14cm}}
\end{align}$ | |
 |
$\begin{align}&AB \perp OX , \text { }\text{X is the midpoint of AB}\\[5pt]
AB &=8cm\\[5pt]
AX &=4cm\text{(X is the midpoint of AB)}\\[5pt]
&\text{Applying Pythagoras' theorem to OXA triangle}\\[5pt]
OA^2 &=OX^2+XA^2\\[5pt]
r^2&=(r-3)^2+4^2\\[5pt]
r^2&=r^2-6r+9+16\\[5pt]
6r&=25\\[5pt]
r &=\frac{25}{6}\\[5pt]
&\underline{\underline{r=4\frac{1}{6}cm}}
\end{align}$ | |
 |
$\begin{align}A\hat XC &=B\hat XC=90^0\text { }\text{Since the line joining the center of the circle to the midpoint of a chord is perpendicular to the chord.}\\[5pt]
&AXC \triangle \text { }\text{and} \text { }BXC \triangle\\[5pt]
AX &=XB\text{(Data)}\\[5pt]
A\hat XC&=B\hat XC\text{ } (90^0)\\[5pt]
CX &=CX\text{(Common)}\\[5pt]
&AXC \triangle \equiv BXC \triangle\text{(SAS)}\\[5pt]
&\underline{\underline{AC=BC\text { }\text{(Corresponding elements of congruent triangles are equal)}}}
\end{align}$ | |
 |
$\begin{align}&OXQ \triangle \text { }\text{and} \text { }OYR \triangle\\[5pt]
X\hat OQ&=Y\hat OR\text{(Opposite angles )} \\[5pt]
O\hat XQ&=O\hat YR\text{ } (90^0)\\[5pt]
OQ &=OR\text{(Radius)}\\[5pt]
&OXQ \triangle \equiv OYR \triangle\text{(AAS)}\\[5pt]
XQ&=YR\text { }\text{(Corresponding elements of congruent triangles are equal)}\\[5pt]
2XQ&=2YR-->(1)\\[5pt]
&PQ \perp OX , \text { }\text{X is the midpoint of PQ}\\[5pt]
2XQ&=PQ-->(2)\\[5pt]
&PR \perp OY , \text { }\text{Y is the midpoint of PR}\\[5pt]
2YR&=PR-->(3)\\[5pt]
&(2) , (3)\text { }\text{Substitute in (1)}\\[5pt]
&\underline{\underline{PQ=PR}}
\end{align}$ | |
 |
$\begin{align}\text{Construction} &-\text{ Draw OX Perpendicular from O to AB}\\[5pt]
&-\text{Draw OY Perpendicular from O to CD}\\[5pt]
&AB \perp OX , \text { }\text{X is the midpoint of AB}\\[5pt]
&CD \perp OY , \text { }\text{Y is the midpoint of CD}\\[5pt]
AB &=24cm\\[5pt]
XB &=\frac{1}{2}\times 24=12cm\\[5pt]
&\text{Applying Pythagoras' theorem to OXB triangle}\\[5pt]
OB^2 &=OX^2+XB^2\\[5pt]
&=5^2+12^2\\[5pt]
&=25+144\\[5pt]
&=169\\[5pt]
OB &=\sqrt{169}\\[5pt]
&\underline{\underline{OD=OB=13cm}}\\[5pt]
&\text{Applying Pythagoras' theorem to OYD triangle}\\[5pt]
OD^2 &=OY^2+YD^2\\[5pt]
YD^2&=13^2-12^2\\[5pt]
&=169-144\\[5pt]
&=25\\[5pt]
YD &=\sqrt{25}\\[5pt]
&\underline{\underline{YD=5cm}}\\[5pt]
CD&=2YD\text { }\text{(Y is the midpoint of CD)}\\[5pt]
&=2\times 5\\[5pt]
&\underline{\underline{CD=10cm}}
\end{align}$
|  |
 |
$\begin{align}&AB \perp OX , \text { }\text{X is the midpoint of AB}\\[5pt]
AX &=\frac{1}{2}\times AB\\[5pt]
&AC \perp OY , \text { }\text{Y is the midpoint of AC}\\[5pt]
AY &=\frac{1}{2}\times AC\\[5pt]
AB &=AC\text{(ABC is an equivalent triangle)}\\[5pt]
\frac{1}{2}\times AB&=\frac{1}{2}\times AC\\[5pt]
AX &=AY\\[5pt]
&AOX \triangle \text { }\text{and} \text { }AOY \triangle\\[5pt]
A\hat XO&=A\hat YO\text{ } (90^0)\\[5pt]
AX &=AY\text{(Proved)}\\[5pt]
AO &=AO\text{(Common)}\\[5pt]
&AOX \triangle \equiv AOY \triangle\text{(RHS)}\\[5pt]
OX&=OY--(1)\text { }\text{(Corresponding elements of congruent triangles are equal)}\\[5pt]
&YOC \triangle \equiv ZOC \triangle \\[5pt]
OY&=OZ--(2)\text { }\text{(Corresponding elements of congruent triangles are equal)}\\[5pt]
&\text{Using (1) and (2)}\\[5pt]
&\underline{\underline{OX=OY=OZ}}
\end{align}$
| |
 |
$\begin{align}&PQ \perp OX , \text { }\text{X is the midpoint of PQ}\\[5pt]
PX &=\frac{1}{2}\times PQ\\[5pt]
&\text{Applying Pythagoras' theorem to PXO triangle}\\[5pt]
PO^2 &=PX^2+OX^2\\[5pt]
&=(\frac{1}{2}PQ)^2+OX^2\\[5pt]
&=\frac{1}{4}PQ^2+OX^2 -->(1)\\[5pt]
&RS\perp OY , \text { }\text{Y is the midpoint of RS}\\[5pt]
RY&=(\frac{1}{2})RS\\[5pt]
&\text{Applying Pythagoras' theorem to RYO triangle}\\[5pt]
RO^2 &=RY^2+OY^2\\[5pt]
RO^2&=(\frac{1}{2}RS)^2+OY^2\\[5pt]
&=\frac{1}{4}RS^2+OY^2 -->(2)\\[5pt]
PO&=RO\text{(Radius of the circle)}\\[5pt]
PO^2&=RO^2\\[5pt]
&(1)=(2)\\[5pt]
\frac{1}{4}PQ^2+OX^2&= \frac{1}{4}RS^2+OY^2\\[5pt]
PQ^2+4OX^2&=RS^2+4OY^2\\[5pt]
&\underline{\underline{PQ^2-RS^2=4OY^2-4OX^2}}
\end{align}$
| |
By studying this lesson you will be able to
Solve problems by using the theorem that the straight line joining the midpoint of a chord of a circle to the centre is perpendicular to the chord.