How can we help you today?
< All Topics
Print
$\begin{align}&\text{Length of Iron beam}=5.4m-540cm\\[5pt]
&\text{Width of Iron beam}=0.36m-36cm\\[5pt]
&\text{Depth of Iron beam}=0.22m-22cm\\[5pt]
&\text{Mass of one cubic centimetre}=7.86g=\frac {7.86}{1000}kg =0.00786kg\\[5pt]
&=540 \times 36\times22\times 0.00786\\[5pt]
lg&=540 \times 36\times22 \times 0.00786\\[5pt]
&=lg540 \times lg36\times lg22 \times lg0.00786\\[5pt]
&=2.7324+1.5563+1.3424+\bar{3}.{8954}\\[5pt]
&=3.5265\\[5pt]
&=antilog 3.5265\\[5pt]
&=\text{Mass of iron beam}\underline{ \underline {3361kg}}
\end{align}$

$\begin{align}g&=\frac{4\Pi^2l}{T^2}\\[5pt]
g&=\frac{4\times3.142^2\times1.75}{2.7^2}\\[5pt]
lgg&=lg\frac{4\times3.142^2\times1.75}{2.7^2}\\[5pt]
lgg&=lg4+lg3.142^2+lg1.75-lg2.7^2\\[5pt]
&=0.6021+2\times 0.4972+0.2430-2\times 0.4314\\[5pt]
&=0.6021+0.9944+0.2430- 0.8628\\[5pt]
&=0.9767\\[5pt]
g&=antilog 0.9767\\[5pt]
&=\underline{ \underline {9.478}}
\end{align}$
$\begin{align}&\\[5pt]
&={\Pi}r_1^2 -{\Pi}r_2^2\\[5pt]
&={\Pi}\times0.75^2 -{\Pi}\times 0.07^2\\[5pt]
&={\Pi}(0.75^2- 0.07^2)\\[5pt]
&={\Pi}\times(0.75+0.07)(0.75-0.07)\\[5pt]
&=\text{(i)Area of the remaining part}{\Pi}\times0.82\times0.68\\[5pt]

&=3.142\times0.82\times0.68\\[5pt]
lg&=lg(3.142\times0.82\times0.68)\\[5pt]
lg&=lg3.142+lg0.82+lg0.68\\[5pt]
&=0.4972+\bar{1}.9138+\bar{1}.8325\\[5pt]
&=0.2435\\[5pt]
&=antilog 0.2435\\[5pt]
&=\text{(ii)Area }\underline{ \underline {1.752m^2}}
\end{align}$
$\begin{align}&PR=x\\[5pt]
&x^2=3.75^2-0.94^2\\[5pt]
&=(3.75+0.94)(3.75-0.94)\\[5pt]
&=4.69\times2.81\\[5pt]
&=\sqrt{4.69\times2.81}\\[5pt]
lgx&=lg\sqrt{4.69\times2.81}\\[5pt]
&=\frac{1}{2}lg(4.69\times2.81)\\[5pt]
&=\frac{1}{2}(lg4.69+lg2.81)\\[5pt]
&=\frac{1}{2}(0.6712+0.4487)\\[5pt]
&=\frac{1}{2}\times1.1199\\[5pt]
&=antilog 0.5599\\[5pt]
&=\text{Length of PR}\underline{ \underline {3.63m}}
\end{align}$

By studying this lesson you will be able to

Use the table of logarithms to simplify expressions involving products and quotients of powers and roots of numbers 0 and1.

X