 |
a. | $\begin{align}&\frac{{8.765}\times^3\sqrt{27.03}}{24.51}\\[5pt]
\lg &=lg(\frac{{8.765}\times^3\sqrt{27.03}}{24.51})\\[5pt]
&=lg{8.765}+{\frac{1}{3}lg27.03} -lg24.51\\[5pt]
&={0.9427}+{\frac{1}{3}\times 1.4319} -1.3894\\[5pt]
&={0.9427}+{0.4773} -1.3894\\[5pt]
&={0.0306}\\[5pt]
&=antilog 0.0306\\[5pt]
&=\underline{ \underline {1.073}}
\end{align}$ |
b. | $\begin{align}&\frac{{\sqrt{9.18}}\times{8.02^2}}{9.83}\\[5pt]
lg&=lg(\frac{{\sqrt{9.18}}\times{8.02^2}}{9.83})\\[5pt]
&=lg{\sqrt{9.18}}+lg{8.02^2}-lg{9.83}\\[5pt]
&={\frac{1}{2}\times 0.9628} +2\times{0.9042} -0.9926\\[5pt]
&={0.4814}+{1.8084} -0.9926\\[5pt]
&={1.2972}\\[5pt]
&=antilog 1.2972\\[5pt]
&=\underline{ \underline {19.82}}
\end{align}$ |
c. | $\begin{align}&\frac{{\sqrt{0.0945}}\times{4.821^2}}{48.15}\\[5pt]
lg&=lg(\frac{{\sqrt{0.0945}}\times{4.821^2}}{48.15})\\[5pt]
&=\lg{\sqrt{0.0945}}+lg{4.821^2}-lg{48.15}\\[5pt]
&={\frac{1}{2}\times \bar{2}.9754} +2\times{0.6831} -1.6825\\[5pt]
&=\bar{1}{.4877}+{1.3662} -1.6825\\[5pt]
&=-1+0.4877+1+0.3662 -1-0.6825\\[5pt]
&=-1+0.4877+0.3662 -0.6825\\[5pt]
&=-1+0.1714\\[5pt]
&=\bar{1}{.1714}\\[5pt]
&=antilog \bar{1}{.1714}\\[5pt]
&=\underline{ \underline {0.1483}}
\end{align}$ |
d. | $\begin{align}&\frac{{3}\times{0.752^2}}{\sqrt{17.96}}\\[5pt]
lg&=(\frac{{3}\times{0.752^2}}{\sqrt{17.96}})\\[5pt]
&=lg{3}+lg{0.752^2}-lg{\sqrt{17.96}}\\[5pt]
&= {0.4771}+2\times \bar{1}.{8762}-{\frac{1}{2}\times{1.2544}}\\[5pt]
&=0.4771+\bar{1}{.7524} -0.6272\\[5pt]
&=0.2295-0.6272\\[5pt]
&=-0.3977\\[5pt]
&=-1+1-0.3977\\[5pt]
&=-1+0.6023\\[5pt]
&=\bar{1}{.6023}\\[5pt]
&=antilog \bar{1}{.6023}\\[5pt]
&=\underline{ \underline {0.4002}}
\end{align}$ |
e. | $\begin{align}&\frac{{6.591}\times{^3\sqrt{0.0782}}}{0.9821^2}\\[5pt]
lg&=(\frac{{6.591}\times{^3\sqrt{0.0782}}}{0.9821^2})\\[5pt]
&=\lg{6.591}+lg{^3\sqrt{0.0782}}-lg{0.9821^2}\\[5pt]
&=0.8190+{\frac{1}{3}\times \bar{2}.8932}-2\times\bar{1}{.9921}\\[5pt]
&={0.8190}+\bar{1}.{6310}-\bar{1}.{9842}\\[5pt]
&=0.4658\\[5pt]
&=antilog 0.4658\\[5pt]
&=\underline{ \underline {2.923}}
\end{align}$ |
f. | $\begin{align}&\frac{{3.251}\times{^3\sqrt{0.0234}}}{0.8915}\\[5pt]
lg&=(\frac{{3.251}\times{^3\sqrt{0.0234}}}{0.8915})\\[5pt]
&=\lg{3.251}+lg{^3\sqrt{0.0234}}-lg{0.8915}\\[5pt]
&=0.5120+{\frac{1}{3}\times \bar{2}.3692}-\bar{1}{.9501}\\[5pt]
&={0.5120}+\bar{1}.{4564}-\bar{1}.{9501}\\[5pt]
&=0.5120-1+0.4564-(-1+0.9501)\\[5pt]
&=0.5120-1+0.4564+1-0.9501\\[5pt]
&=0.5120+0.4564-0.9501\\[5pt]
&=0.0183\\[5pt]
&=antilog 0.0183\\[5pt]
&=\underline{ \underline {1.043}}
\end{align}$
|
By studying this lesson you will be able to
Use the table of logarithms to simplify expressions involving products and quotients of powers and roots of numbers 0 and1.