$\begin{align}&S=\{1,2,3,4,5,6,7,8\}\\[5pt]
&(i)\text{A has 8 events.}A _{1}, A _{2}, A _{3}, A _{4}, A _{5}, A _{6}, A _{7}, A _{8}\\[5pt]
&A _{1}=\{1\} , A _{2}=\{2\} , A _{3}=\{3\} , A _{4}=\{4\}\\[5pt]
&A _{5}=\{5\} , A _{6}=\{6\} , A _{7}=\{7\} , A _{8}=\{8\}\\[5pt]
&(ii)\\[5pt]
&n ({A_1})=1 , n ({A_2})=1 , n ({A_3})=1 , n ({A_4})=1\\[5pt]
&n ({A_5})=1 , n ({A_6})=1 , n ({A_7})=1 , n ({A_8})=1 , n ({S})=8\\[5pt]
&P ({A_1})=\frac{n (A_1)}{n (S)}=\frac{1}{8} , P ({A_2})=\frac{n (A_2)}{n (S)}=\frac{1}{8} ,P ({A_3})=\frac{n (A_3)}{n (S)}=\frac{1}{8} ,P ({A_4})=\frac{n (A_4)}{n (S)}=\frac{1}{8} \\[5pt]
&P ({A_5})=\frac{n (A_5)}{n (S)}=\frac{1}{8} , P ({A_6})=\frac{n (A_6)}{n (S)}=\frac{1}{8} ,P ({A_7})=\frac{n (A_7)}{n (S)}=\frac{1}{8} ,P ({A_8})=\frac{n (A_8)}{n (S)}=\frac{1}{8} ,\\[5pt]
&=\underline{\underline{P (A)=\frac{n (A)}{n (S)}=\frac{1}{8}}}\\[5pt]
&(iii)B=\{1,3,5,7\}\\[5pt]
&(iv)P ({B})=\frac{n (B)}{n (S)}=\frac{4}{8}=\frac{1}{2}\\[5pt]
&P ({B'})=1-P(B)=1-\frac{1}{2}=\frac{1}{2}\\[5pt]
&(v)P ({X})=0.5=\frac{1}{2}=\frac{4}{8}\\[5pt]
&X_1 =\{2,4,6,8\}\\[5pt]
&X_2 =\{2,3,5,7\}\\[5pt]
\end{align}$
| |
$\begin{align}&(i)S=\{(1,1) , (1,2) , (1,3) , (2,1) , (2,2) , (2,3) , (3,1) , (3,2) , (3,3)\}\\[5pt]
&n(S)=9\\[5pt]\\[5pt]
&(ii)A=\{(2,2)\}\\[5pt]
&n(A)=1\\[5pt]\\[5pt]
&(iii)P(A)=\frac {n(A)}{n(S)}\\[5pt]
&p(A)=\frac {1}{9}\\[5pt]\\[5pt]
\end{align}$
$\begin{align}&(iv)\\[5pt]
\end{align}$

$\begin{align}& \\[5pt]
&(v)P(B)=\frac {n(B)}{n(S)}\\[5pt]
&=\frac {4}{9}\\[5pt]\\[5pt]
&(vi)\\[5pt]
\end{align}$

$\begin{align}& \\[5pt]
&\text {Probability of drawing at least one even number =P(o,e)+P(e,o)+P(e,e)}\\[5pt]
&=\frac {2}{9} + \frac {2}{9} + \frac {1}{9}\\[5pt]
&=\frac {5}{9}\\[5pt]
\end{align}$ | |