How can we help you today?
< All Topics
Print
Grade 11 Exercise-11_19.1.1.
$\begin{align}&\\[5pt]
(i)\text{ } &(2\text{ } 3)\\[5pt]
(ii)\text{ } &\text{(4 1)}\\[5pt]
(iii)\text{ } &\text{(1 5)}\\[5pt]
&\end{align}$
$(iv) \begin {align}&\\
\begin{pmatrix}
2 & 3 \\
4 & 1 \\
1 & 5 \\

\end{pmatrix}
&\end{align}$



Grade 11 Exercise-11_19.1.2.
(2)i$\begin{align}&\\[5pt]

&\underline{\underline{3\times 2}}
&\end{align}$
ii$\begin{align}&\\[5pt]
&\underline{\underline{2\times 3}}
&\end{align}$
iii$\begin{align}&\\[5pt]
&\underline{\underline{3\times 1}}
&\end{align}$
iv$\begin{align}&\\[5pt]
&\underline{\underline{1\times 2}}\\[5pt]
&\end{align}$
v$\begin{align}&\\[5pt]
&\underline{\underline{1\times 3}}
&\end{align}$
vi$\begin{align}&\\[5pt]
&\underline{\underline{2\times 2}}
&\end{align}$
Grade 11 Exercise-11_19.1.3.
$\begin{align}&\text {Row matrices}\\[5pt]
(i)\text{ } \text{ } &P=(3\text{ } \text{ } 0\text{ } \text{ } 2)\\[5pt]
(iii)\text{ } \text{ } &R=(4\text{ } \text{ } 3)\\[5pt]
(v)\text{ } \text{ } &T=(1\text{ } \text{ } 1\text{ } \text{ } 1)\\[5pt]
&\end{align}$
$\begin{align}&\text {Column matrices}\\[5pt]
(ii)&Q=\begin{pmatrix}
2 \\
3 \\


\end{pmatrix}\\[5pt]
(iv)&S=\begin{pmatrix}
2 \\
0 \\
1 \\

\end{pmatrix}\\[5pt]

&\end{align}$
Grade 11 Exercise-11_19.1.4.
$\begin{align}&\text {Squire matrices}\\[5pt]
(A)&\begin{pmatrix}
1 & 2 \\
2 & 0 \\
\end{pmatrix}\\[5pt]

(C)&\begin{pmatrix}
2 & 2 & 1 \\
4 & 0 & 4 \\
2 & 2 & 1 \\

\end{pmatrix}\\[5pt]
(D)&\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}\\[5pt]

(E)&\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}\\[5pt]

(F)&\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{pmatrix}\\[5pt]

(G)&\begin{pmatrix}
1 & 0 \\
1 & 1 \\
\end{pmatrix}\\[5pt]


&\end{align}$
$\begin{align}&\text {Symmetric matrices}\\[5pt]
(A)&\begin{pmatrix}
1 & 2 \\
2 & 0 \\
\end{pmatrix}\\[5pt]


(D)&\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}\\[5pt]

(E)&\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}\\[5pt]

(F)&\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{pmatrix}\\[5pt]




&\end{align}$
$\begin{align}&\text {Identity matrices}\\[5pt]

(E)&\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}\\[5pt]




&\end{align}$

By studying this lesson you will be able to

Identify a matrix, identify the elements and the order of a matrix, add multiply and subtract matrix.

X