< All Topics Main Grade 11 19. Matrices Exercise 19.1 Print $\begin{align}&\\[5pt] (i)\text{ } &(2\text{ } 3)\\[5pt] (ii)\text{ } &\text{(4 1)}\\[5pt] (iii)\text{ } &\text{(1 5)}\\[5pt] &\end{align}$ $(iv) \begin {align}&\\ \begin{pmatrix} 2 & 3 \\ 4 & 1 \\ 1 & 5 \\ \end{pmatrix} &\end{align}$ (2)i$\begin{align}&\\[5pt] &\underline{\underline{3\times 2}} &\end{align}$ii$\begin{align}&\\[5pt] &\underline{\underline{2\times 3}} &\end{align}$iii$\begin{align}&\\[5pt] &\underline{\underline{3\times 1}} &\end{align}$iv$\begin{align}&\\[5pt] &\underline{\underline{1\times 2}}\\[5pt] &\end{align}$v$\begin{align}&\\[5pt] &\underline{\underline{1\times 3}} &\end{align}$vi$\begin{align}&\\[5pt] &\underline{\underline{2\times 2}} &\end{align}$$\begin{align}&\text {Row matrices}\\[5pt] (i)\text{ } \text{ } &P=(3\text{ } \text{ } 0\text{ } \text{ } 2)\\[5pt] (iii)\text{ } \text{ } &R=(4\text{ } \text{ } 3)\\[5pt] (v)\text{ } \text{ } &T=(1\text{ } \text{ } 1\text{ } \text{ } 1)\\[5pt] &\end{align}$$\begin{align}&\text {Column matrices}\\[5pt] (ii)&Q=\begin{pmatrix} 2 \\ 3 \\ \end{pmatrix}\\[5pt] (iv)&S=\begin{pmatrix} 2 \\ 0 \\ 1 \\ \end{pmatrix}\\[5pt] &\end{align}$$\begin{align}&\text {Squire matrices}\\[5pt] (A)&\begin{pmatrix} 1 & 2 \\ 2 & 0 \\ \end{pmatrix}\\[5pt] (C)&\begin{pmatrix} 2 & 2 & 1 \\ 4 & 0 & 4 \\ 2 & 2 & 1 \\ \end{pmatrix}\\[5pt] (D)&\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\\[5pt] (E)&\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\\[5pt] (F)&\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}\\[5pt] (G)&\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ \end{pmatrix}\\[5pt] &\end{align}$$\begin{align}&\text {Symmetric matrices}\\[5pt] (A)&\begin{pmatrix} 1 & 2 \\ 2 & 0 \\ \end{pmatrix}\\[5pt] (D)&\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\\[5pt] (E)&\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\\[5pt] (F)&\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}\\[5pt] &\end{align}$$\begin{align}&\text {Identity matrices}\\[5pt] (E)&\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\\[5pt] &\end{align}$By studying this lesson you will be able toIdentify a matrix, identify the elements and the order of a matrix, add multiply and subtract matrix.