 |
(1)a. | $\begin{align}\\[5pt]
&2\times 3a\\[5pt]
=&\underline{\underline{6a}}\end{align}$ | b. | $\begin{align}\\[5pt]
&4\times (-2x)\\[5pt]
=&\underline{\underline{-8x}}\end{align}$ | c. | $\begin{align}\\[5pt]
&(-3)\times 2x\\[5pt]
=&\underline{\underline{-6x}}\end{align}$ |
d. | $\begin{align}\\[5pt]
&2x\times 3y\\[5pt]
=&\underline{\underline{6xy}}\end{align}$ | e. | $\begin{align}\\[5pt]
&3a\times (-5b)\\[5pt]
=&\underline{\underline{-15ab}}\end{align}$ | f. | $\begin{align}\\[5pt]
&(-2m)\times 4n\\[5pt]
=&\underline{\underline{-8mn}}\end{align}$ |
g. | $\begin{align}\\[5pt]
&(-4p)\times (-2q)\\[5pt]
=&\underline{\underline{8pq}}\end{align}$ | h. | $\begin{align}\\[5pt]
&3x\times 5x\\[5pt]
=&\underline{\underline{15x^2}}\end{align}$ | i. | $\begin{align}\\[5pt]
&(-5a)\times 3a\\[5pt]
=&\underline{\underline{-15a^2}}\end{align}$ |
 |
(2)a. | $\begin{align}\\[5pt]
&2(x+1)\\[5pt]
=&\underline{\underline{2x+2}}\end{align}$ | b. | $\begin{align}\\[5pt]
&3(b+3)\\[5pt]
=&\underline{\underline{3b+9}}\end{align}$ | c. | $\begin{align}\\[5pt]
&4(y-2)\\[5pt]
=&\underline{\underline{4y-8}}\end{align}$ |
d. | $\begin{align}\\[5pt]
&-3(a+2)\\[5pt]
=&\underline{\underline{-3a-6}}\end{align}$ | e. | $\begin{align}\\[5pt]
&-2(x-2)\\[5pt]
=&\underline{\underline{-2x+4}}\end{align}$ | f. | $\begin{align}\\[5pt]
&x(2x+3)\\[5pt]
=&\underline{\underline{2x^2+3x}}\end{align}$ |
g. | $\begin{align}\\[5pt]
&2y(y+1)\\[5pt]
=&\underline{\underline{2y^2+2y}}\end{align}$ | h. | $\begin{align}\\[5pt]
&-2x(4x+1)\\[5pt]
=&\underline{\underline{-8x^2-2x}}\end{align}$ | i. | $\begin{align}\\[5pt]
&-3b(a-b)\\[5pt]
=&\underline{\underline{-3ab+3b^2}}\end{align}$ |
j. | $\begin{align}\\[5pt]
&2(a-b-3c)\\[5pt]
=&\underline{\underline{2a-2b-6c}}\end{align}$ | | | | |
 |
(a)i. | $\begin{align}\\[5pt]
&x(x+2)+2(x+2)\\[5pt]
=&x^2+2x+2x+4\\[5pt]
=&\underline{\underline{x^2+4x+4}}\end{align}$ | ii. | $\begin{align}\\[5pt]
&y(y+3)+3(y-2)\\[5pt]
=&y^2+3y+3y-6\\[5pt]
=&\underline{\underline{y^2+6y-6}}\end{align}$ | | |
iii. | $\begin{align}\\[5pt]
&x(x+1)-3(x-1)\\[5pt]
=&x^2+x-3x+3\\[5pt]
=&\underline{\underline{x^2-2x+3}}\end{align}$ | iv. | $\begin{align}\\[5pt]
&m(m-3n)-n(m-3n)\\[5pt]
=&m^2-3mn-mn+3n^2\\[5pt]
=&\underline{\underline{m^2-4mn+3n^2}}\end{align}$ | | |
(b)i. | $\begin{align}\\[5pt]
&(x+5)(x+8)\\[5pt]
=&x^2+8x+5x+40\\[5pt]
=&\underline{\underline{x^2+13x+40}}\end{align}$ | ii. | $\begin{align}\\[5pt]
&(7+a)(3+a)\\[5pt]
=&21+3a+7a+a^2\\[5pt]
=&\underline{\underline{21+10a+a^2}}\end{align}$ | | |
iii. | $\begin{align}\\[5pt]
&(x-5)(x+8)\\[5pt]
=&x^2+8x-5x-40\\[5pt]
=&\underline{\underline{x^2+3x-40}}\end{align}$ | iv. | $\begin{align}\\[5pt]
&(x+5)(x-8)\\[5pt]
=&x^2-8x+5x-40\\[5pt]
=&\underline{\underline{x^2-3x-40}}\end{align}$ | | |
v. | $\begin{align}\\[5pt]
&(2+m)(3-m)\\[5pt]
=&6+3m-2m-m^2\\[5pt]
=&\underline{\underline{6+m-m^2}}\end{align}$ | vi. | $\begin{align}\\[5pt]
&(x-5)(x-8)\\[5pt]
=&x^2-8x-5x+40\\[5pt]
=&\underline{\underline{x^2-13x+40}}\end{align}$ | | |