How can we help you today?
< All Topics
Print
Grade 10 Exercise 2.1.0
i.\begin{align*}
&\sqrt{5}\\[5pt]
&2^2=4 \\[5pt]
&3^2=9 \\[5pt]
&2.2^2=4.84\\[5pt]
&2.3^2=5.29\\[5pt]
&\approx\underline{\underline{{2.2}}}
\end{align*}
ii.\begin{align*}
&\sqrt{20}\\[5pt]
&4^2=16 \\[5pt]
&5^2=25 \\[5pt]
&4.5^2=20.25\\[5pt]
&4.6^2=21.16\\[5pt]
&\approx\underline{\underline{{4.5}}}
\end{align*}
iii.\begin{align*}
&\sqrt{67}\\[5pt]
&8^2=64 \\[5pt]
&9^2=81 \\[5pt]
&8.2^2=67.24\\[5pt]
&8.3^2=68.89\\[5pt]
&\approx\underline{\underline{{8.2}}}
\end{align*}
iv.\begin{align*}
&\sqrt{115}\\[5pt]
&10^2=100 \\[5pt]
&11^2=121 \\[5pt]
&10.7^2=114.49\\[5pt]
&10.8^2=116.64\\[5pt]
&\approx\underline{\underline{{10.7}}}
\end{align*}
v.\begin{align*}
&\sqrt{1070}\\[5pt]
&32^2=1024 \\[5pt]
&33^2=1089 \\[5pt]
&32.7^2=1069.29\\[5pt]
&32.8^2=1075.84\\[5pt]
&\approx\underline{\underline{{32.7}}}
\end{align*}

By studying this lesson you will be able to

Use the division method to find an approximate value for the square root of a positive number which is not a prefect square.

X