How can we help you today?
< All Topics
Print
Grade 10 Exercise 17.1
$\begin{align} &\text {Parallelograms are b,d,f,j,k,m,n,r}\\[5pt]
\end{align}$
Grade 10 Exercise 17.1
$\begin{align}(i)&BCP \text { }\triangle \text { }\text{and}\text { } DPE \text { }\triangle \\[5pt]
&PC=DP\text{(Midpoint)}\\[5pt]
&P\hat BC=D\hat EP\text{(Alternate angles)}\\[5pt]
&B\hat PC=D\hat PE\text{(Vertically opposite angles)}\\[5pt]
&BCP \text { }\triangle \text { }\equiv DPE \text { }\triangle\text{(AAS)}\\[5pt]
(ii)&DE=BC\text{(Corresponding elements are equal)}\\[5pt]
&DE\parallel BC\\[5pt]
&\text{BCED is a parallelogram}\\[5pt]
\end{align}$
Grade 10 Exercise 17.1
$\begin{align}&OD=OC\text{(Radius of circle)}\\[5pt]
&AO=OB\text{(Radius of circle)}\\[5pt]
&\text{ACBD is a parallelogram (Diagonals are bisected each other)}\\[5pt]
\end{align}$
Grade 10 Exercise 17.1
$\begin{align}(i)&AXD\text { }\triangle \text { }\text{and}\text { } BYC \text { }\triangle \\[5pt]
&D\hat XA=C\hat YB= 90^0\text{(Given)}\\[5pt]
&AD\parallel BC\\[5pt]
&D\hat AX=B\hat CY\text{(Alternate angles)}\\[5pt]
&AD=BC\text{(Opposite sides of ABCD parallelogram)}\\[5pt]
&AXD \text { }\triangle \text { }\equiv BYC \text { }\triangle\text{(AAS)}\\[5pt]
(ii)&DX=BY\text{(Corresponding elements are equal)}\\[5pt]
(iii)&D\hat XY =90^0=B\hat YX\text{(Alternate angles are equal)}\\[5pt]
&DE\parallel BY\\[5pt]
&\text{BYDX is a parallelogram (A pair of side parallel and equal)}\\[5pt]
\end{align}$
Grade 10 Exercise 17.1
$\begin{align}&\text {QPRS quadrilateral}\\[5pt]
&AB=PQ\text{(ABPQ Parallelogram -Opposite sides are equal)}\\[5pt]
&AB=SR\text{(ABRS Parallelogram -Opposite sides are equal)}\\[5pt]
&PQ=SR\\[5pt]
&PQ\parallel SR\\[5pt]
&\text{QPRS is a parallelogram (A pair of side parallel and equal)}\\[5pt]
\end{align}$
Grade 10 Exercise 17.1
$\begin{align}&\text {ABCD parallelogram}\\[5pt]
&AO=OC -->(1)\text{(Diagonals bisect)}\\[5pt]
&AE=FC -->(2)\text{(Given)}\\[5pt]
&(1)-(2)\\[5pt]
&AO-AE=OC-FC\\[5pt]
&EO=OF\\[5pt]
&OD=OB\text{(Diagonal of ABCD parallelogram)}\\[5pt]
&\text {DEBF quadrilateral}\\[5pt]
&EO=OF\text{(Diagonal bisect each other)}\\[5pt]
&OD=OB\text{(Diagonal bisect each other)}\\[5pt]
&\text{EBFD is a parallelogram}\\[5pt]
\end{align}$
Grade 10 Exercise 17.1
$\begin{align}(i)&\text {ABCD parallelogram}\\[5pt]
&AB=DC \text{(Opposite sides are equal)}\\[5pt]
&DA=BC \text{(Opposite sides are equal)}\\[5pt]
&DA=AX\\[5pt]
&BC=AX\\[5pt]
&\text {AXBC quadrilateral}\\[5pt]
&BC=AX\text{(Opposite sides)}\\[5pt]
&BC\parallel AX\\[5pt]
&\text{AXBC is parallelogram (A pair of sides equal and parallel)}\\[5pt]
(ii)&\text {ABYC quadrilateral}\\[5pt]
&AB\parallel DY\text{(Given)}\\[5pt]
&AC\parallel XY\text{(AXBC parallelogram)}\\[5pt]
&\text{ABYC is a parallelogram (Opposite sides are parallel)}\\[5pt]
(iii)&\text {ABCD parallelogram}\\[5pt]
&CD=AB \\[5pt]
&\text {ABYC parallelogram}\\[5pt]
&CY=AB\\[5pt]
&CY=CD\\[5pt]
\end{align}$


Grade 10 Exercise 17.1
$\begin{align}(i)&\text {PQRS parallelogram}\\[5pt]
&OP=OR \text{(Diagonals bisect)}-->(1)\\[5pt]
&PM=TR \text{(Given)}-->(2)\\[5pt]
&(1)-(2)\\[5pt]
&OP-PM=OR-TR\\[5pt]
&OM=OT\\[5pt]
(ii)&\text {PQRS quadrilateral}\\[5pt]
&OS=OQ\text{(Diagonals bisect each other)} -->(1)\\[5pt]
&SN=LQ \text{(Given)}-->(2)\\[5pt]
&(1)-(2)\\[5pt]
&OS-SN=OQ-LQ\\[5pt]
&ON=OL\\[5pt]
&\text {LMNT quadrilateral}\\[5pt]
&OM=OT\\[5pt]
&ON=OL\\[5pt]
&\text{LMNT is a parallelogram (Diagonals bisect each other)}\\[5pt]
(iii)&\text{MSTQ quadrilateral}\\[5pt]
&OM=OT\\[5pt]
&OS=OQ\text{(PQRS parallelogram)}\\[5pt]
&\text{MSTQ is a parallelogram (Diagonals bisect each other)}\\[5pt]
\end{align}$
Grade 10 Exercise 17.1

By studying this lesson you will be able to

Identify the conditions that need to be satisfied for a quadrilateral to be a parallelogram.

X