 |
$\begin{align} & \frac {x}{3} +\frac {x}{3} \\[5pt]
&\frac {x+x}{3} \\[5pt]
&\underline{\underline{\frac {2x}{3} }}\\[5pt]
\end{align}$ | $\begin{align} & \frac {x+1}{5} +\frac {2x+3}{3} \\[5pt]
&\frac {3x+3+10x+15}{15} \\[5pt]
&\underline{\underline{\frac {13x+18}{15} }}\\[5pt]
\end{align}$ | $\begin{align} & \frac {x}{3} +\frac {x}{2}+\frac {x}{4} \\[5pt]
&\frac {4x+6x+3x}{12} \\[5pt]
&\underline{\underline{\frac {13x}{12} }}\\[5pt]
\end{align}$ |
 |
$\begin{align} & \frac {x+1}{3} +\frac {x+3}{6} \\[5pt]
&\frac {2x+2+x+3}{6} \\[5pt]
&\underline{\underline{\frac {3x+5}{6} }}\\[5pt]
\end{align}$ | $\begin{align} & \frac {2}{a} +\frac {3}{a}-\frac {1}{a} \\[5pt]
&\frac {2+3-1}{a} \\[5pt]
&\underline{\underline{\frac {4}{a} }}\\[5pt]
\end{align}$ | $\begin{align} & \frac {5}{x+2}-\frac {3x+1}{x+2} \\[5pt]
&\frac {5-(3x+1)}{x+2} \\[5pt]
&\frac {5-3x-1}{x+2} \\[5pt]
&\underline{\underline{\frac {4-3x}{x+2} }}\\[5pt]
\end{align}$ |
By studying this lesson you will be able to
Simplify algebraic fractions with unequal denominators.